Cloud Native MongoDB: building a scalable infrastructure with Open Source components

Takis Stathopoulos, PhD

Enterprise Architect@Percona

I. Cloud Native

- II. Cloud Native MongoDB Options
 - A. Proprietary
 - B. Open
- III. Comparing Proprietary vs. Open Source
- IV. Conclusions

2

© Copyright 2023 Percona® LLC. All rights reserved

MongoDB?

Why?

- Natively web-scale ready
- Built in resilience, High
 Availability
- Low entry barrier for development & installation
- NoSQL

Is everything perfect?

Relied on open source components

Initially open source itself

"Source-Available" now

SSPL means MongoDB being the Single Public DBaaS provider

Cloud Native MongoDB Options

Cloud Native Definition

Source: https://github.com/cncf/toc/blob/main/DEFINITION.md

Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.

Cloud Native Definition

Source: https://github.com/cncf/toc/blob/main/DEFINITION.md

Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are **resilient**, **manageable**, and **observable**. Combined with robust **automation**, they allow engineers to make high-impact changes frequently and predictably with minimal toil.

The proprietary way

MongoDB, Inc.

What?

Fully Managed Database as a Service (DBaaS)

MongoDB Enterprise Features and more

Strengths

- Great UX!
- Pay-as-you go
- Cloud resources *seem* virtually unlimited
- Available in *major* Public Clouds
 - AWS, Azure, GCP

Traps?

Atlas

MongoDB Atlas, 3-node RS, AWS eu-west-1

from \$1.15 /hr	4 vCPUs	80 GB	16 GB	M40 •
from \$2.20 /hr	8 vCPUs	160 GB	32 GB	M50 •
from \$4.36 /hr	16 vCPUs	320 GB	64 GB	M60 •
from \$8.06 /hr	32 vCPUs	750 GB	128 GB	M80 •
from \$12.13 /hr	48 vCPUs	1000 GB	192 GB	M140
from \$16.10 /hr	64 vCPUs	1500 GB	256 GB	M200 •
from \$24.11 /hr	96 vCPUs	2000 GB	384 GB	M300 •
from \$24.73 /hr	64 vCPUs	3000 GB	512 GB	M400 •
from \$36.73 /hr	96 vCPUs	4096 GB	768 GB	M700

Scaling up:

- Only 10 production-grade tiers
- Any upgrade costs double
- Limited options available

M50 \$2.20/h = **\$19,272/year**

M60 \$4.36/hr = **\$38,193.6/year**

© 2023 Percona

Scaling

Granularity

Couple of

sizes fit all!

What? Flexibility lack of

How? Scale Up Avg. CPU Util > 75% for past 1h Avg. Mem > 75% for past 1h Autoscaling Next highest cluster tier Scale down Avg. Util. < 50% for the past 24h* *https://www.mongodb.com/docs/atlas/cluster-autoscaling/ No arbiter nodes Topology No single node dev clusters **Uniform offering** AWS, Azure, GCP common denominator

Grow by Credit Card

but is it efficient?

Overprovisioning

• Instead of Root Cause Analysis

Less careful planning

- Convenient to add nodes and shards
- Non-optimal architectures
- Building 20-shard 5-node each cluster? Easy!

Pay as you go quickly adds-up

Cloud DBaaS lock-in

You can check-out any time you like, but you can never leave

Is there a better way?

The Open Cloud Native way

K8s Operators

8

Kubernetes (K8s)

Observable, Containers, Microservices, ...

Automated, Manageable, Easy to use, ...

Scalable, Cloud Independent, Resilient, Declarative, ...

Kubernetes in a single slide

Basic objects

Cluster, Pods, Worker Nodes, Volumes, Secrets, Deployments, Services, ReplicaControllers, StatefulSets, Persistent Volume Claims ...

But is it complex?

Operators are software extensions to Kubernetes that make use of Custom Resources Definitions (CRDs) to manage applications and their components.

sharding: mongos: size: 3 configsvrReplSet: size: 3 backups: ...

Operators abstract and automate Database - level concepts to K8s primitive transparently for the end - user

Deploying a MongoDB cluster via Percona Operator for MongoDB

```
apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDB
metadata:
  name: percona-live-cluster
spec:
  crVersion: 1.15.0
  image: percona/percona-server-mongodb:6.0.4-
3
  secrets:
    users: minimal-cluster
  replsets:
  - name: shard1
    size: 3
    resources:
      limits:
        cpu: "4"
        memory: "8G"
      requests:
        cpu: "4"
        memory: "8G"
    volumeSpec:
      persistentVolumeClaim:
        resources:
          requests:
            storage: 30Gi
             © 2023 | Percona
```

sharding: enabled: true configsvrReplSet: size: 3 resources: limits: cpu: "2" memory: "4G" requests: cpu: "2" memory: "4G" volumeSpec: persistentVolumeClaim: resources: requests: storage: 3Gi mongos: size: 3

\$kubectl apply -f cr.yaml

https://docs.percona.com/percona-operator-for-mongodb/compare.html Operators compared

Percona Operator for MongoDB

- Deploy easily: replica sets, shards, (mongo/d/s/c)
- 2. Topology management (arbiters, node affinity, scaling)
- 3. Monitoring integration
- 4. Network exposure and load balancing
- 5. Backups management with Percona Backup for MongoDB
- 6. Self-healing
- 7. Upgrade automation (minor, manual major)
- 8. Configuration adjustments

Percona Server for MongoDB

Enterprise

Test and package for

Bring in the enterprise

features companies need.

Level QA

Enterprise Features

everyone!

Binary compatible, drop-in replacement

for MongoDB CE . No license fees, free to use

Enterprise features, without the restrictions

- 1. Advanced backups (Physical, PITR)
- 2. LDAP Integration
- 3. Data-at-rest encryption
- 4. KMIP integration
- 5. Auditing
- 6. PMM Monitoring

	器 Query Analytics .	/ PMM Query	Analytics 🏫 🖏	() Last	12 hours 🗸 🔍	C - ₽
a°				E Hor	me 🔠 Query Analyt	ics 😑 Services
			PMM Query Analytics ~			
	Filters Show Selecte				🖒 Copy Link	O Add column
			# Query V Search by Q Load		<u>Query Count</u> \$	<u>Query Time</u>
	Environment		TOTAL ENGLAND TOTAL	10.69 load	3.59k QPS	2.97 m
	Dead	06.016	1 update sbtest1 set k-k? where id-?	2.68 load	263.74 QPS	10.15 m
	n/a	3.63%	2 update sbtest1 set c=? where id=?	2.21 load	258.02 QPS	8.57 m
			3 INSERT INTO "sbtest1" ("Id", 'k', 'c', 'pad') VALUES () @	1.65 load	119.41 QPS	13.81 m
ଜ	Staging		4 SELECT 'EVENT_NAME', 'COUNT_STAR', 'SUM_TIMER ()	1.46 load	1.20 QPS	1.22 se
	Cluster		5 insert into sbtest1 (id, k, c, pad) values(?+) ①	1.18 load	409.10 QPS	2.88 m
oUO	MySQI Cluster1	Ja 65.47%	6 delete from sbtest1 where id=?	0.66 load	513.02 QPS	1.28 m
	pxc-80-cluster	alia 29.43%	7 SHOW BINARY LOGS ©	0.38 load	0.20 QPS	1.89 se
			8 select c from sbtest1 where id=? O	0.09 load	1.05k QPS	82.34 µ
	ps-80-gr	ali 0.49%	9 commit © https://www.states.d.b.a.md.c.	0.08 load	74.37 QPS	1.12 m
	PXCCluster1	d] 0.19%	10 select distinct c from sbtest1 where id between ? and ?	0.02 load	51.04 QPS	489.03 µ
	Replication Set		11 CREATE TABLE 'sbtest1' (ID INTEGER NOT NULL AUTO	0.02 load	4.13 QPS	5.83 m
۲	MySQLRepISe pxc-80-cluster n/a	di 65.47% di 29.43% 4.11%	< 1 2 3 4 5 ···· 10 > 25/pagev 1-25 of 244 items			
0	ps-a0-gr	dl 0:49%				

lt's open.

Is it better?

K8s resources are costefficient

- K8s runs everywhere!
- Managed K8s options
 - ~\$70/month at any major cloud provider
 - Runs on laaS cost-efficient resources
 - Utilize "raw" resources at "raw" resource prices

DBaaS convenience fee vs laaS cost

Cloud and region	MongoDB Atlas	laaS pay-as-you-go	laaS reserved (3y)			
M30 (3-node RS, 2vCPU, 8GB RAM, 40GB disk)						
AWS us-east1	\$4,730	\$2,666	\$1,204			
Azure centralus	\$5,256	\$2,450	\$1,049			
GCP us-east1	\$3,854	\$2,796	\$1,393			
M200 (4x3-node RS, 64vCPU, 256GB RAM, 2TB storage)						
AWS us-east1	\$555,822	\$355,086	\$159,674			
Azure centralus	\$626,515	\$366,672	\$162,575			
GCP us-east1	\$525,755	\$379,376	\$198,303			

No backup, no data transfer fees, yearly

DBaaS convenience fee vs laaS cost

Cloud and region	MongoDB Atlas	laaS pay-as-you-go	laaS reserved (3y)			
M30 (3-node RS, 2vCPU, 8GB RAM, 40GB disk)						
AWS us-east1	\$4,730	\$2 <i>,</i> 666	\$1,204			
Azure centralus	\$5,256	\$2,450	\$1,049			
GCP us-east1	\$3,854	\$2,796	\$1,393			
M200 (4x3-node RS, 64vCPU, 256GB RAM, 2TB storage)						
AWS us-east1	\$555,822	\$355,086	\$159,674			
Azure centralus	\$626,515	\$366,672	\$162,575			
GCP us-east1	\$525,755	\$379,376	\$198,303			

No backup, no data transfer fees, yearly

Scaling Granularity

4 CPU -> 8 CPU -> 16 CPU -> 32 CPU 16GB -> 32GB -> 64GB -> 128 GB

Im (0.001 CPU) and 1 (CPU) k, M, G, T...

12,5 CPU and 19GB RAM

- Multiple tiers
- Scale up earlier
- Scale up more gracefully

Resource flexibility

- Optimize your K8s environment
 - Define multiple node groups types
 - Choose CPU/memory ratio wisely
 - Utilize Local NVMe's vs. EBS storage
 - Storage can be extremely expensive for larger workloads

Configuration Flexibility

What? How?

Conclusions

1. No Silver bullet

Understand your workload and growth projections

1. Cloud DBaaS such as MongoDB Atlas comes with a huge premium fee

In some cases 5x cloud resources cost.

1. Hidden costs and suboptimal MongoDB configuration make the situation worse

Cloud DBaaS fees are difficult to predict and understand.

1. Kubernetes and Percona MongoDB Operator can handle any MongoDB workload

The solution has been proven in production for many years.

1. Running MongoDB on K8s has a significant cost saving potential

It makes it possible to utilize cheap "raw" cloud resources without giving up convenience and automation

