Cloud-Native Postgres
Observability: From Client Apps to |
Underlying Cloud Resources (@ PERCONA

UNIVERSITY

Open Source Databases Me

Co-Founder at Coroot
July 1, 2024

In partnership with @ FerretDB

Modern systems

« Hundreds or even thousands of services dynamically allocated to nodes
« Nodes are dynamic and can appear and disappear
* Network-attached volumes

 If something goes wrong:
« Troubleshooting follows the system’s topology

« Analysis of extensive telemetry, from application latency to EBS
performance

coroot i~#

Modern Systems

- Siloed Knowledge
- Siloed Responsibility
« Siloed Monitoring Systems

* Finding out the problematic component can be
harder than fixing the issue

Observabillity is ...

.. being able answer questions about your system:

* How is the system performing right now?
« How does its performance compare to an hour ago?
« Why are some requests failing?

« Why are certain requests taking longer than expected?

- Observability is most valuable during system failures or issues, so we
should think of it by considering failure scenarios

coroot i~# 4

What can possibly go wrong here?

‘ Appl?cod:ion Ji

« The app is not available

- The DB is not available

« Network connectivity issues between the app and the DB
+ Network delay between the app and the DB

« The DB responses slowly

« The DB rejects connections from the app

coroot i~# 5

When we only look at the DB, we don't see the big picture

' Applicod:ion JI

« Error counters are not available in pg_stat_*

« Per-client query statistics are not provided in pg_stat_*

« Query latency in pg_stat_statements doesn’t include network latency

coroot i~# 6

“The customer is always right”

« Let’'s consider databases as utility services

. The Service Level metrics (availability, latency) should be measured on the
client’s side

« The database-side metrics are needed to “explain” the DB’s behavior, e.g.,
why the DB is rejecting connections or performing slowly.

coroot i~# 7

Client-side query statistics

What we want to know:

- The number of queries from a given app instance to a particular DB
instance

« Errors (TCP level, L/-protocol level)

 Latency

How we can gather these statistics:
* Instrumenting apps with OpenTelemetry SDKs

« Using eBPF to capture queries made by every process/container to
measure the statistics

coroot i~# 8

Instrumenting apps with OpenTelemetry

- OpenTelemetry is a vendor-neutral framework for instrumentation
applications, including database calls

- SDKs are available for many programming languages and frameworks

« It wraps every database call to gather statistics
& Trace fc4cf39643832f662de7f33885735301

Started at: 2024-04-08 15:37:14.992 Duration: 794.99ms Status: @HTTP-200

Service & Operation show sub-trace |0 159.00ms 318.00ms 476.99ms 635.99ms 794.99ms

794.74ms

v [front-end GET /catalog/
v [front-end HTTP GET B 11.54ms
v catalog GET /catalog/product/{product} 10.09ms Query
- | catalog gorm.qQuery : 9.93ms / ‘ ‘ ‘ ‘
782.99ms

- I front-end access_log publish

coroot i~#

Instrumenting apps with OpenTelemetry

With distributed tracing we can know exactly what's happened with any given
request

Span: 159cc16d93da1f58 X
name gorm.Query
service catalog Latency
duration 9.93ms /
status QoK <« Status

Attributes
db.rows_affected 1
db.sql.table products Query
db.statement SELECT * FROM "products" WHERE "products"."id" = 65829 /
db.system postgresql
otel.scope.name github.com/uptrace/opentelemetry—-go-extra/otelgorm
service.name catalog

5 ¢|

coroot :~# B

Challenges associated with Distributed Tracing

« Huge volume of telemetry data
- Hard to achieve 100% coverage without blind spots (e.g., legacy services)
« Requires code changes and application deployments

 Potential overhead

coroot i~# N

eBPF-based instrumentation

- An agent captures network calls from each process running on the node
It parses L7 protocols including Postgres Wire Protocol

- Doesn't require code changes, so can instrument even legacy and 3rd-party
services

« Can be integrated in minutes
- Can capture stats even within SSL-enabled connections
« Query latency contains network latency since it's measured on client’s side

- Doesn’t affect application latency*

Open-source implementations supporting Postgres: Coroot, Pixie, eCapture

* https://coroot.com/docs/coroot-community-edition/getting-started/performance-impact

coroot :~# BV

eBPF-based instrumentation

Capturing System Calls:
- connect(): obtaining PID, FD, destination IP:PORT, and status.

- write(), writev(), sendmsg(), sendto(), SSL_write(), read(), readv(),
recvmsg(), recvfrom(), SSL_read(): monitoring for Postgres protocol frames

coroot :~# BRE

eBPF-based instrumentation

Postgres Protocol Parsing:

« Identifying Postgres protocol frames requires parsing only ~10 bytes of
payload in kernel-space

- Payloads (up to 1kB) are transferred to user-space along with (PID, FD,
timestamp, payload)

« Client app container is resolved using PID
« Connection destination IP:PORT is resolved using PID + FD
 If tracing is enabled, payload parsing extracts query text

- For prepared statements, the agent maintains a mapping of statement_id
to statement_text

coroot ~# B

eBPF: performance impact

The Linux kernel ensures minimal interruption to kernel code execution by validating
each eBPF program before execution:

« Program must have a finite complexity.

« The verifier evaluates all possible execution paths within configured upper
complexity limits

Communication between kernel-space and user-space programs occurs through a
ring buffer:

 If the user-space program delays data reading, it may miss data due to
overwriting

For observability, it's a great deal: although we might lose some telemetry data,
we can be sure that there is no impact on performance

coroot ~# Bs

eBPF-based metrics

@ db1

€ postgres / ns:default

‘\ db1-backup-rjv4-kzzkv

® app 268 ps db1-instance1-2x8v-0

ns:default 0.5ms role:replica / version:16.1
617 rps ® k3s
0.6ms \ i i .
’ 332 1ps .| dbl-instancel-jxqw-0 & instances:1
@ coroot-prometheus-server 0.5ms role:primary / version:16.1 \
ns:coroot \
db1-instance1-tg65-0 =

N

role:replica / version:16.1

" db1-repo-host-0 !

We know how each application instance communicates with each DB
instance:

* Queries per second
« Errors

- Latency

eBPF-based traces

Latency & Errors heatmap, requests per second

|
0.07/s 629/s 1258/s
errors
>10s

10s
5s
2.5s
1s
0.5s [3
0.25s
100ms
50ms
25ms
rams B i i | il \ \ i
5
g T T T T T T T T T T T T T T T T T
Apr 12 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55 13:00
Client Status Duration Name Details
= app @ OK 27.04ms query PREPARE AS select title, body from articles where id = any ($1)
= app @ oK 53.30ms query insert into articles (created, title, body) values ($1, $2, $3)
= app @ oK 38.06ms query select id from articles where created < $1 order by created desc limit $2
= app @ OK 26.22ms query PREPARE AS select id from articles where created < $1 order by created desc limit $2

« Traces are extremely useful for identifying the particular queries within an
anomaly

« They also provide a more granular distribution of queries by latency and
status

coroot i~#

17

Postgres metrics

eBPF-based metrics and traces can't answer all questions:

« Why is the database performing slower than before?

« Why is the database rejecting new client connections?

While eBPF-based metrics can highlight what is happening, to answer WHY it's
happening, we need to collect other metrics.

coroot ~# Bk

Why are my queries executed slower that usual?

« Alack of CPU time
- Node CPU capacity
« Resource limits leading to CPU throttling
« Resource contention caused by other applications
« Resource contention caused by other queries

+ Issues related to I/O performance
« Volume I/O capacity (Block storage I/O limits, hardware performance)
- High I/O latency, particularly with network-attached volumes
« Resource contention due to other applications
« Resource contention due to other queries
« Using temp files due to insufficient work_mem

 Locks

coroot ~# BEE

CPU related metrics: CPU delay

CPU delay total ~ , seconds/second (®

150m
100m

50m

Om

Apr 12 13:00 13:10 13:20 13:30 13:40

l dbl-instance1-2x8v-0 [db1l-instancel-jxqw-0 [| dbl-instance1-tg65-0 [dbl1-repo-host-0

« The Linux kernel reports CPU delay, indicating how long a specific process or
container has been waiting for CPU time

« For instance, if you observe a delay of 150ms per second, it signifies that you are
experiencing an additional latency of 150ms, which is spread across all queries
processed during that wall-clock second

« Next steps: check CPU throttling, node CPU usage, other CPU consumers

coroot i~#

20

CPU related metrics: CPU throttling

Throttled time | total ~ , seconds/second (©

100
80
60
40
20
0

Apr 12 13:00 13:10 13:20 13:30 13:40

I db1-instance1-2x8v-0 [dbl-instancel-jxqw-0 [dbl-instancel-tg65-0 | db1-repo-host-0

« When a container hits its CPU limit and exhausts the allowed CPU bandwidth, it
gets throttled for the remainder of that period.

- This introduces additional latency spread across all queries processed during
that wall-clock second.

« If a container is CPU-limited (throttled), the CPU delay metric will also increase

coroot i~# 21

CPU related metrics: CPU usage

Node CPU usage k3s-node-1 ~ ,%

CPU consumers on k3s-node-1 ~ , cores ()

60 4
40 3
2
20
1
0 0
Apr12 13:00 13:10 13:20 13:30 13:40 Apr 12 13:00 13:10 13:20 13:30 13:40
B user [nice Jl system [] iowait | steal [irq softirq l coroot-clickhouse-shard0 [l db1 [l app || coroot-node-agent [other [total

« Node CPU capacity always is limited
« Processes on the same node compete for CPU time

« In dynamic environments like Kubernetes, it's useful to track CPU usage per
application running on a node to explain any CPU usage anomalies

CPU related metrics: CPU usage by queries

Queries by total time on db1-instance1-jxqw-0 ~ , query seconds/second
20m
15m
10m

5m

om - I
Apr 12 13:50 14:00 14:10 14:20 14:30

| db1@db1: select id from articles where created < ? order by created desc limit ? I
[l db1@db1: insert into articles (created, title, body) values (?)

- Postgres doesn’t count CPU usage by queries
- To roughly estimate that we can use total query execution time
* pg_stat_statements provides statistics only for finished queries

« To get visibility into long-running queries that are not finished yet, we need to
merge statistics from pg_stat_statements and pg_stat_activity

coroot i~# BFE

pg_stat_statement visibility

pg_stat_statements visibility now
‘ query ’ ‘ query ’ ‘ failed query ’ { query ’
‘ query ’ ‘ query ’ | query] ‘ query ’ ‘ query { query ’ t

« Only displays finished queries

« Queries that finish with errors/timeout are not taken into account

coroot ~# Er

pg_stat_activity visibility

pg_stat_activity visibility now
‘ query] ‘ query ’ ‘ failed query query
‘ query] ‘ query ’ | query ‘ query ’ ‘ query query :

- Doesn’t track history

- Hard to track short-lived queries

coroot ~# B

pg_stat_statements + pg_stat_activity

. To achieve full query visibility, we implemented an open-source (Apache 2.0)
Prometheus metric exporter for Postgres

« It aggregates data from pg_stat_statements and pg_stat_activity to provide
accurate metrics about queries, whether they are completed or still running

« Fully integrated with Coroot (Apache 2.0)

https://github.com/coroot/coroot-pg-agent

https://github.com/coroot/coroot

coroot ~# B

https://github.com/coroot/coroot-pg-agent

Explaining a CPU anomaly

CPU usage total ~ ,cores ®

0.75 4x CPU usage increase —>
0.5

o.és VAN

Apr 12 16:35 16:40

B dbl-instance1-2x8v-0 [dbl-instancel-jxqw-0 [dbl-instance1-tg65-0 [db1-repo-host-0

Queries by total time on db1-instancel-jxqw-0 ~ , query seconds/second
800m

600m
400m

200m / query
Om
Apr 12 AAss 16:40

ll postgres@db1: select count (?) from articles where body like ? I
[l db1@db1: select id from articles where created < ? order by created desc limit ?

coroot :~# B

/O related metrics: 1/O latency

Type

I/0 latency /pgdata ~ , seconds

8m
6m
4m
2m
Om
Apr 12 16:35 16:40

B dbi1-instance1-2x8v-0 [| db1-instancel-jxqw-0 [db1-instancel-tg65-0

Amazon EBS gp2/gp3/iol/io2

Amazon EBS io2 Block Express

HDD

NVMe SSD

An average time spent doing read and write operations

Avg latency

‘single-digit millisecond”
"sub-millisecond"

2-4ms

0.1-0.3ms

coroot i~#

28

/O related metrics: I/ O utilization %

I/0 utilization /pgdata ~ , %

40

30
20
10 — e — e —

0

Apr 12 16:35 16:40

B dbl-instance1-2x8v-0 [db1l-instancel-jxqw-0 [| dbl-instancel-tg65-0

- Total number of seconds the disk spent doing 1/O

- E.g, if the derivative of this metric for a minute interval is 60s, this means
that the disk was busy 100% of that interval.

coroot ~# Bl

1/O related metrics: IOPS

600

400

200

IOPS | db1-instancel-jxqw-.. ~

B read

Apr12 16:35 16:40

[write

« Total number of reads or writes completed successfully.

Type

Amazon EBS scl

Amazon EBS stl

Amazon EBS gp2/gp3
Amazon EBS iol/io2

Amazon EBS io2 Block Express
HDD

SATA SSD

NVMe SSD

Max IOPS
250

500
16,000
64,000
256,000
200
100,000

10,000,000

coroot ~# Bl

1/O related metrics: I/O bandwidth

Bandwidth db1-instancel-jxqw-.. ~ , bytes/second

40M

20M

M ——3——
Apr 12 16:35 16:40

ll read | written

« Total number of bytes read from the disk or written to the disk

Type Max throughput
Amazon EBS scl 250 MB/s
Amazon EBS stl 500 MB/s
Amazon EBS gp2 250 MB/s
Amazon EBS gp3 1,000 MB/s
Amazon EBS iol/io2 1,000 MB/s
Amazon EBS io2 Block Express 4,000 MB/s
SATA 600 MB/s

SAS 1,200 MB/s
NVMe 4,000 MB/s

coroot i~#

Explaining an 1I/O anomaly

1/0 latency | /pgdata ~ , seconds 1/0 utilization ' /pgdata ~ , %

8m
6m
4m
2m

Om
Apr12 16:35 16:40

ll dbl-instance1-2x8v-0 [l dbl-instancel-jxqw-0 [| dbl-instancel-tg65-0

I0OPS | db1-instancel-jxqw-.. ~ /

Bandwidth db1-instancel-jxqw-.. ~ , bytes/second

600
40M
400
200 20M
0 oM S -
Apr12 16:35 16:40 Apr12 16:35 16:40
N read | write Nl read | written

Queries by I/0 time on ' db1-instancel-jxqw-0 ~ , query seconds/second

1.5
! query —
0.5
0
Apr12 16:35 16:40
ll postgres@db1: select count (?) from articles where body like ? I

[l db1@db1: insert into articles (created, title, body) values (?)

coroot i~# BV

How to be able to
solve the issue ?

- Ensure your observability is complete,
with no blind spots

- Ensure you have tools to reliably
identify the components experiencing
issues

» Use skill-appropriate tools, less can be
more in the time crunch

« Have evidence for escalation to
another team or vendor

33

Thank you, Let’'s Connect!

In partnership with @ FerretDB

https://www.linkedin.com/in/peterzaitsev/
https://twitter.com/PeterZaitsev
http://www.peterzaitsev.com/

